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A GENERALIZED OPTIMIZATION TECHNIQUE FOR STEP
DISCONTINUITY IN PLANAR OPTICAL WAVEGUIDES.
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The guided optical energy transmitted across a step junction between two planar optical waveguides
depends on the overlap integral of the modes of these guides. The maximum guided transmitted power
ocmnsnxaceﬁainvalueofﬂlcmﬁo'guﬂdeﬂﬁckneﬂwavelength'.misnﬁocmnotbecalcumed
analytically. We have sbownuwmxﬁnumminimdependsonﬂmmnofﬂwoveﬁapmtew
extending over the step height only. We have shown also that maximum transmission occurs when the two
guides have equal effective Mcknm%mblummfomulmﬂteop&mimﬁonoftheguidedwave
m‘nnimmdlejumﬁmmagmwizedmmmmmmespeciﬁcvﬂus of the opto-
geometric parameters of the two guides are imelevant.

Lintroduction;

The concept of integrated optics was bomn three decades ago with the development of guided
waves optical communications. The major problem of fiber optics transmission was the signal attenuation
and dispersion due to propagation, whichimplythemofrepeﬂmtomformntandampiifymeopﬁcﬂ
signals after long propagation distances. The solution to these problems, offered by bulky classical optics
components, are unsatisfactory until Miller [1] suggested another solution based on integrated all-optical
components fabricated on a single chip, with optical waveguides connecting them. Consequently,
waveguides with different opto-geometrical characteristics (fabricated on the same substrate) are
connected together.

The transfer of guided optical energy at the junction between two dissimilar waveguides is accompanied
bysome}ossofmergy.Theunomtofsuchlmdependsm:hegeomﬂicdmdopﬁcajmnwmof
each waveguide (dimensions, refractive indices, etc...). The importance of maximizing the transmission of
meguidedcnetgyﬁmmglﬁdewmodm.mdnﬁnimiﬁngﬂmmryhuisﬂmefomobviom.m
theoretical and experimental studies on step waveguide junctions are so extensive. Unfortunately, the
theoretical analysis of waveguide junctions is usually very involved and eventually leads to complicated
techniques like: Weiner-Hoph [2], residue-calculus (3], integral equations [4] and Green’s function [5].
However, some less involved like: mode matching [6], beam propagation method (BPM) [7] and
polynominlexpmsionB]amvcryuseﬁﬂmdgiveanoepnblemummulmforawideclassaf
waveguide junctions. In spite of the huge efforts devoted to the problem of planar waveguide
dimtinuitieu,lhﬁeismgemnlizedmmmnofﬂntpmblmeapeciaﬂywhmweneedw“mﬁmim"
mcnepdimﬁnuiq,forexmplewhmwcmkmxhnmmmuedguidedemrgymmkﬁmmn
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scattered energy. Because none of the available techniques can expect or predict “when” the conditions of
maximum transmitted guided energy or minimum scattered energy occur. For example, it is well known
thatﬂietlmsmithedguidedeneryatastepdisoontinuitymchuamimmnvalueataccmin ratio of the
“step height/wavelength”. This ratio is not known a priori. .

Marcuse [9] applied the mode matching technique in the analysis of the radiation loss of step
discontinuities in planar optical waveguides. He found that, as we stated before, there is an optimum
wavelength at which the radiation loss is minimum. Many authors [10-15] found the same behavior (point
of minimum radiation loss) for optical waveguide junctions. A

In this paper , we present a novel optimization method that can deal with step discontinuities
without the need to specify the numerical values of the opto-geometric parameters of the step , ie. a
generalized optimization method .

- ion:

Figure 1 depicts two dissimilar asymmetric waveguides “1” and “2" which are butt-jointed at the
plane z=0.

We assume that the cover, film and substrate refractive indices of the waveguides are n, ny and n,
xespective}y.'l‘heﬁlmthicknmmd. and d,. This step is of practical importance because it is very
suitable in modeling planar waveguide junctions between two waveguides fabricated on the same
substrate (a situation which is frequently encountered in the manufacturing of planar integrated optical
components).

For simplicity, we assume that the waveguidesmsing}e-mnde.'fhemalyﬁswillbccanied out for
the TE case and the extension to TM case is systematic. Accordingly, a TE mode propagating from z=-0
inthcwaveguids“l"isincidentonmewaveguide“?’atthejmnﬁmphez-O.Th'umodewﬂlemitein
the backward direction (zsﬂ)aguidadTEmodeandaconﬁnmunof’l‘Enﬁ-ﬁonmodcs[w.IT.lS].The
mcidentmodewiﬂexciwdsoinmefomatddhcﬁon(zzo)aforwtdgd@ﬁmodcandacontinuum
of'I‘Endiationmodsmwaveguide“Z”.Themdia&onmodﬂmeq:mdhthefmnof Fourier
inﬁegralsnlongtheumsvuuwnvenumberaxisnspoinmdomby[D,w].Theﬁddmponmtsof&wTE
modumE,ILdeLwhaemembwﬁpts:,yandzmm&wﬁmofﬂnempomm.while
“E"and“ﬂ”dawmmcelecuicandmagncﬁcﬁeldrupﬂcﬁve&l‘heﬁmdq:mdmoeofﬂw
elecunmagm:ticﬁeldsise"’mditwillbesuppressedﬂnmughtnth:pw.ma-depwdmoeofﬂ:e
guided modes in the guides “/” and “2” are ¢~/*and ¢~/ respectively. The total electric field E; in the
regionzﬁﬂisthemmofincidentgtﬁded mode, the reflected guidedmdel:dd:ereﬂectedmdisﬁon
modes. It is written as:

o
E, =E_:.(3J+¢,E:.W+ {q,(k,).e;(x.t‘)-dkx (1)
0
where the subscripts or the superscripts “/” and 7" refer to the incident and reflected fields respectively,
and c, is the reflection coefficient ofﬂ:cbmkwardguidedmodewhibg,{k)hdzmﬂecﬁmooefﬁcimof
the backward radiation mode ¢’y belonging to guide “1” at the transverse wavenumber k, (k,=1’k: -B);

whmk.-m.kﬁwﬁa&mwnvcnumbermdl,isduwmmh)mdﬂ,isthc
'mmofthebackwudmdiaﬁmnmde(&npmpmﬁhmwmﬂnﬁhn).
Similarly, the total electric field E; in the region 220 is given by:

-]
E,=cE,m+ iq,a,).e;rx.nx).dt‘ @
where E', is the electric field intensity of the mmmdmudedmmmmfﬁmm
(nummiuioncoeﬁciem)isc,,whileq,(k)isﬂwmsnisshnmeﬁcientafﬂnﬁxwdrdimimmodee’,
uthemwmmvmmbut..mimmmkhﬂnﬁghbhndddeoﬁhﬂmmeqmﬁmmpmsem

the radiation modes continuum in both waveguides (i.e.forzﬁﬂmdz?.ﬂ).Similuly.ﬁnmulmngxeﬁc
fields H, for z<0 and H, for z>0 are given by:

H,=Hi(.ﬂ+c’ﬂi(x)+iq,(kx}.h:(x,kx).dk' 3
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and
H, =c'H;au?q,th).k;(x.kx).dk' @
0

The magnetic field intensity of the radiation modes in the regions <) and z20 are /i, and /', respectively.
Noting that Maxwell’s equations allows us to write:
wy ol 5)
wp oZ

where w is the radial frequency and p is the magnetic permeabilily which is assumed to be equal to the
free space magnetic permeability u,. The propagation constants of the guided modes in both waveguides
will be denoted by £, and S, while those of the radiation modes are f, and f,. The continuity of the
transverse components of the electric and magnetic fields at z=0 (taking the last equation into account)
result in the following two equations:

¥ ¥
Elg+c,El)+[q, k) €) (k) -dk =, Elx)+ g,k )-eixky)-dk, (6)
L o

o @
B, E () +f,¢c,E () + ! Patylhe) el (xiky ) o dhy = PrciE ()= | Pulilhu)= € (xiky) o dhy- @)

The transverse distribution of the guided mode field can be obtained by solving the wave equation
in the three regions: cover, film and substrate, then satisfying the boundary conditions at the upper and
lower interfaces of the film [13,17]. The resulting eigenvalue equation for the propagation constant P is
then solved numerically. For the guided TE mode, the transverse distribution of the electric field is given
by:

E =Ae™" for x>0

= A;[cos(xx) e ~Sx<0 (8)

%3
= A fcos(x4,) + 2Lsin x4, ] e™(**4) XS~y
£

where:

a, =B —knl, x,=\k!n} - B} .and @, =B} —kln] . Ais an arbitrary constant amplitude

which can be normalized such that the power carried by a guided mode is unity. Accordingly 4 is given

by:
s 2x\}my,P < (8-a)
3, el Yo
Jﬁ: [dl +a_¢.r > a, ]'["l * a’d]
where the power carried by the mode is:

P= 2—;9 [E,(x)-Ej(x)dx=1 9

The asterisk denotes the complex conjugate. The unknown propagation constant f; is the solution of the
following eigenvalue equation:
xd, - tan”! (52 - tan™ (2L = e 9
X L]
where “m” is an integer: the mode order.

- te Solu for the T, i tion Coefficient:
It is well known [6, 8, 9, 12] that an exact solution to Eqns. (6) and (7) is obviously impossible since we
have two equations and four unknowns ¢, ¢, g, and g, However, an approximate solution can be obtained
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by neglecting the reflected radiation modes (i.c. neglecting g.(kJ)). This approximation is acceptable and
justified [9] if the amplitude of the guided reflected mode ¢, is much less than the amplitude of the guided
transmitted mode ¢,. In that case gk, will never exceeds ¢.. Such approximation is valid in both cases:

Large step size : in this case gi(kJ>> g.(ky), that is the radiation loss in the forward dircction is the
dominant one.

Small step size: in this case the modes of both guides “/” and “2” are nearly the same, i.c. they are
almost orthogonal to each other, and hence the projection of the guided transmitted mode £,'(x) on the
reflected radiation modes g{kJe,’(x.k.) is negligible. This will simplify very much the solution of (6) and
(7) because if we take the scalar Pmduc: of both sides of (6) with the complex ccn‘iugate magnetic field of
the guided transmitted mode 1" (x), that is, multiplying both sides of (6) with H.' (x) and integrating over

 from - to oo and taking (5) into account (i.c. HI (x)=(-p,/ wp, )Ef (x) ) we obtain:
All+a) T[ El(x)- Ej (x)dx =, A ]’ E}(x): E;'(xmx] (10)
o, op, _,

It is important to note that the guided transmitted mode is orthogonal to the forward radiation modes

(since they belong to the same guide “2", i.. the scalar product of E;,' (x) and Iq,(k_, )-e, (x,k, )dk,
is zero). Recalling that the term between the brackets in the right-hand side of (10) is twice the power
carried by a guided mode (c.f. eq. (9)), so we can write (10) as follows:

1+¢,) " .
c,=-—-——ﬁ’£m;.°') | Bl (x)- EL (x)dx {11

Similarly, multiplying (7) by E: (x) and integrating over the whole cross section of the junction plane we
obtain:

'_ - -,
5'{;#—‘"—) J] E(x)-E} (x)dx =, [—ﬁi— [ E4(x)- E,”(x)dx] (12)
This equation gives:
I-¢,) 7 - 13
P e o] %
Equations (11) and (13) can be solved forc,and ¢, :
C BB (14)
B +B;
__ BB TE(x)E" (15)
R L O
From the last two equations we can readily calculate the guided reflected and transmitted powers P, and
¥ o
L4 5o
Pt =€ } (16)
P,=c;
and hence the scattered power P, lost by radiation at the junction plane is:
P=1-cl-c an

As stated before, P, reaches a minimum value at a certain wavelength 4, (a well known characleristic
result of symmetric and asymmetric junctions). To check such a result we considered a junction with

dyd; = 0.5, d=4um, n=1, n=1.51 and n,=1.5 where both guides are single-mode in the wavelength
range:

A’cll 5'15'1"2 “8)
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where 4.y, is the cutoff wavelength of the first order mode (m=1) of the thick waveguide (guide “/™)
While 1g; is the cutoff wavelength of the fundamental mode (m=0) of the thin waveguide (guide *2").
These wavelengths are given by:

= 2nd,\[n} —n] (19)

3= =3

2xd, ‘/n} -n! 20)

Accordingly both guides are single-mode over the wavelength range 0.96um <1 < I.54um . Fig. 2,
depicts the variations of P, , P, and P, as function of the dimensionless parameter k.4, where £, is the free
space wavenumber 2271. A minimum of the power lost by radiation P, occurs at kd;221.8 which
comresponds to a wavelength A~ [.15um. From that figure we remark that the peak of the guided
transmitted power P; occurs at the same 4, . But the peak of the reflected guided power P, does not occur
astthe same 4.

One of the main results in this paper is to find out the crucial factor which is responsible for the
peak in P, (or c,). Referring to equation (15), ¢, is equal (apart from a multiplicative constant factor 1/, )
%o the product of two terms: the first one is B, B,/ i+ P2, and the second one is the overlap integral [
berween £/ , (%) (the transverse pattern of the incident guided mode) and £ '(x) (the transverse pattern of

e mansmitted guided mode). The first term does not have a maximum as the normalized wsvcnumber
k4, is varied. The second term (the overlap integral) must be considered carefully.
if we write the integration / of the function S(x) = E,’,(x) E,’,'(x) along the whole transverse coordinate -

==<x<= as the sum of four integrals:
I={ E+[:+f:+f }-S(x)dx @1)

These integrals will be denote by I,, I;, I; and I, respectively. Fig. 3 represents the variation of these
: and the transmission coeflicient c, as function of the normalized wavenumber k4.
(the guides have the same opto-geometrical characteristics as those corresponding to guides of Fig. 2).
it is obvious from Fig.3 that the contribution of the fourth integral L to c, is negligible (of the order 10™)
and its peak is far from the peak of ¢, Also the peak of I is far from the peak of ¢, , while I; increases
monotonically with kod,. It remains the integral I, over the step height from —d|to —d;, which has its peak
at kd=21.43 which comresponds to a wavelength A=1.17um while the peak of ¢, occurs at A=1.15um
which is too close to 1.17um. This means that the step height is the dominant factor which determines the
amount of the maximum guided power transmitted across the step discontinuity. And since the guided
transmitted power increases as the patterns (transverse distribution of the electromagnetic fields) of the
incident and transmitted modes become close to each other, this lets us to think about the equality of the
effective thickness of both guided modes: d,4; and d_4; which are leads as:

degy = (1) + (Ve ) + (1/as) 22)

do = (1/d) + (Vaa) + (Vay) (22-a)
where @, and a; are the decay rates of the evanescent tails of the guided modes in the cover region (for
guide 1 and guide 2 respectively). Similarly @, and a,; are the decay rates of the evanescent tails of the
guided modes in the substrate. Fig. 4 depicts the variations of d.z, d,5; and ¢, as function of the normalized
wevenumber kd;. Both widths are equal at k.d,=21.27 (point A) while the peak of ¢, occurs at
£4~21.73 (point B). The relative difference in c, at these normalized wavumbers is of the order 0.08%.
This negligible difference is one of the important results of this paper. Namely, the waveguide junction is
optimal when the effective thicknesses of the fundamental modes of both guides are equal.
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IV- Generalized Optimization of the Junction Discontinuity:
Starting with the normalized frequency ¥ defined as:

V= k,d,fn,’ -n} (23)

and the normalized effective waveguide thickness D,

D, =kdg\[n’—n} 24
we recall that the waveguide asymmetry parameter "a" and the normalized effective mode index "b" are
defined as:

P el (25)
ny—n

e (26)
n—n

where n, = f/k, is the mode effective index. According to these four equations, the normalized
dispersion relation for the m® order mode (i.e. "b" as a transcendental function of "/") takes the form:

VJf—b=m+m"J%l_b)+m"J‘+%’"b) (27)
It is worthwhile to note that normalized dispersion diagram [14] is obtained by solving numerically
the previous equation to get "b" as function of "F".
The mode cutoff corresponds to =0, i.e. the normalized cutoff frequency Ven of the m™ order mode is
given by:

V.=V, +mz (28)
where ¥, is the normalized cutoff frequency of the fundamental mode (m=0) which, according to
equation (27), is given by:
v, =tan” Ja (29)
Finally, the normalized effective waveguide thickness D, can be written as an implicit function of ¥
(since b is a transcendental function of ¥) ina form [14] equivalent to that one given in Eqn. (24):

i3 1 1 30
D. V+7;+7;:-=: ( )

Figure 5 presents the numerical solution of (30), i.e. D{V) for the fundamental mode. It is crucial to
note that there are two values ¥, and ¥ (i.e. two different waveguides with different core thicknesses "d",
c.f. equation.[23]) comesponding to one value of D, . This is also shown in Fig. 6 for different values of
the asymmetry parameter “g". This means that it is always possible to find two different waveguides
having equal effective waveguide thicknesses, i.e. an optimum waveguide junction, without an a priori
knowledge of the specific numerical values of the opto-geometric parameters of the waveguides forming
the junction. The normalized optimization diagram is therefore obtained by solving a two-fold eigenvalue
problem, since we have to search for two eigenvalues: b; and b, which must satisfy the following
transcendental equation:

D,(V,)=D(V,;) 31
or equivalently:
vl oyt (32)
1o, Jbra ' b, |b+e
It is important to note that b, is function of ¥, (through the eigenvalue equation (27)) and similarly for ;.

Figure 6 shows a sample of a family of the normalized optimization diagrams for different asymmetry

- "a”, Thus, given one waveguide with certain ¥; (and hence knowing b, by solving the
eigenvalue Eqn. (27)); the other optimum guide forming the junction has a "F," (noting that b, is function
of ¥;) which can be found from the diagram.

18
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Using the mode-matching technique we have shown that the peaks of the transmission coefficient
and the mode overlap integral over the step height occur almost at the same effective waveguide thickncss.
Furthermore, it was shown that there exist always two dissimilar waveguides having the same cilective
thickness (as shown in Fig.5). Consequently, the condition for an optimal junction is formulated by
solving a two-fold transcendental equation. This allows the generation of a family of normalized
optimization diagrams (Fig.6) which can be used in the design of planar optical waveguide components
for integrated optics. )
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Fig. 2 — Variation of the guided transmitted
and reflected power Py, P, and the
power lost P, as function of kd;.
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Fig. 3 — Variation of the transmission coefficient
¢ and the four integrals I, Iy, I and 1, as Fig. 4 — The point A of equality of the
function of the normalized waveguide effective waveguide thicknesses
thickness kody. The peaks @ and b of ¢, coincides almost with the point B
and I, occur almost at same value of kod, of maximum transmission coefficient ¢,
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Fig. 5 — Two different values of V ( V, and V,)
having the same thickness D, . Fig. 6 - Generalized optimization diagram
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